Simple exploration of 2,4-Dimethylpyridine

Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products. In my other articles, you can also check out more blogs about 108-47-4

Electric Literature of 108-47-4, Chemistry, like all the natural sciences, begins with the direct observation of nature— in this case, of matter.108-47-4, Name is 2,4-Dimethylpyridine, molecular formula is C7H9N. Belongs to chiral-nitrogen-ligands compound. In a article,once mentioned of 108-47-4

Crystal Structures of Three Adducts of Zinc Azide with Dimethylpyridines

Three adducts of zinc azide with 2,4-/3,4- and 3,5-dimethylpyridine (DMP), respectively, were prepared and the crystal structures determined by single crystal X-ray diffraction methods.The three compounds crystallize in the monoclinic space group P21/c with Z = 4: Zn(N3)2*2,4-DMP at 300(2) K: a = 1098.6(4), b = 1600.2(6), c = 608.8(3) pm, beta = 102.47(3) deg; R = 0.071 (RW = 0.056).Zn(N3)2*3,4-DMP at 103(3) K: a = 1102.1(3), b = 1.649.0(4), c = 611.8(1) pm, beta = 104.54(2) deg; R = 0.055 (RW = 0.051).Zn(N3)2*3,5-DMP at 97(3) K: a = 602.1(2), b = 2037.9(7), c = 853.8(3) pm, beta = 90.77(3) deg; R = 0.069 (RW = 0.055).The molecular geometry is similar for the three adducts, but the packing of the DMP-molecules is different.The zinc atoms are surrounded by five nitrogen atoms, four belonging to the azide groups and one to the DMP-adduct.The trigonal bipyramidal shaped ZnN5-polyhedra share common edges to form chains.Keywords.Azide; Crystal structure; Dimethylpyridine; Zinc.

Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products. In my other articles, you can also check out more blogs about 108-47-4

Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis