The Absolute Best Science Experiment for 2,4-Dimethylpyridine

Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products. In my other articles, you can also check out more blogs about 108-47-4

In heterogeneous catalysis, catalysts provide a surface to which reactants bind in a process of adsorption. Related Products of 108-47-4, The reactant in an enzyme-catalyzed reaction is called a substrate. Enzyme inhibitors cause a decrease in the reaction rate of an enzyme-catalyzed reaction.108-47-4, name is 2,4-Dimethylpyridine. In an article,Which mentioned a new discovery about 108-47-4

In this work a new method for determination of vaporization/sublimation enthalpies of aromatic compounds directly at T = 298.15 K was developed. This method is based on the general relationship between vaporization/sublimation enthalpy and enthalpies of solution and solvation of the studied compound in any solvent. According to this method the procedure for determination of vaporization (liquids) or sublimation (solids) enthalpy includes measurement of the solution enthalpy of the compound in a selected solvent and calculation of the solvation enthalpy for this system. A group-additivity scheme for calculation of solvation enthalpies is proposed. The solvation enthalpy of compound is estimated from the solvation enthalpy of parent aromatic or heteroaromatic compound and contributions of the substituent groups. Limiting solution enthalpies of 34 aromatic compounds (substituted benzenes, naphthalenes, biphenyls, pyrene, anthracene and pyridines) in carbon tetrachloride, benzene, acetonitrile and N,N-dimethylformamide were measured in the present work at 298.15 K. Vaporization/sublimation enthalpies of 78 aromatic and heteroaromatic compounds were determined directly at 298.15 K using experimentally measured solution enthalpies and predicted values of solvation enthalpies. The results are in good agreement with available literature data.

Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products. In my other articles, you can also check out more blogs about 108-47-4

Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis