The effect of 119139-23-0 reaction temperature change on equilibrium

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of 119139-23-0, We look forward to the emergence of more reaction modes in the future.

One of the major reasons is to use measurements of the macroscopic properties of a system, such as the rate of change in the concentration of reactants or products with time, to discover the sequence of events that occur at the molecular level.119139-23-0, 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, introduce a new downstream synthesis route. 119139-23-0

EXAMPLE 27 40 mg of a 60% suspension of sodium hydride in mineral oil was added to a solution of 327 mg of 3,4-bis-(3-indolyl)-1H-pyrrole-2,5-dione in 5 ml of DMF at 0 C. under nitrogen. After 0.5 hour the mixture was cooled to -20 C. and 108 mg of trimethylsilyl chloride were added. The mixture was allowed to warm to room temperature, then cooled to 0 C. and then a further 80 mg of sodium hydride were added thereto. After 0.5 hour at 0 C. 116 mg of propylene oxide were added and the mixture was stirred overnight. 5 ml of water were added and the mixture was extracted with dichloromethane. The organic phase was dried and evaporated. The residue was purified on silica gel with ethyl acetate/petroleum ether. Recrystallization from diethyl ether/petroleum ether gave 30 mg of 3,4-bis[1-(2-hydroxypropyl)-3-indolyl]-1H-pyrrole-2,5-dione, m.p. 133-135 C.

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of 119139-23-0, We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; Hoffmann-La Roche Inc.; US5057614; (1991); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis