One of the major reasons is to use measurements of the macroscopic properties of a system, such as the rate of change in the concentration of reactants or products with time, to discover the sequence of events that occur at the molecular level.31886-58-5, (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, introduce a new downstream synthesis route. 31886-58-5
To a degassed solution of (R)-1 (829 mg, 3.22 mmol) in THF (4.5 mL) at -78 C was added dropwise sec-BuLi (1.4 M in cyclohexane, 2.5 mL, 3.55 mmol). The resulting deep red solution was stirred for 1 h at -78 C and for 2 h at 0 C. A solution of ZnBr2 (1.3 M in THF, 3.2 mL, 4.19 mmol) was added and the reaction mixture was stirred for further 40 min at 0 C. A degassed solution of [Pd2(dba)3] (148 mg, 0.162 mmol) and tri-(2-furyl)phosphine (tfp) (299 mg, 1.29 mmol) in THF (6 mL) was prepared and stirred for 20 min at r.t. to give a dark green clear solution. To this catalyst solution were transferred a degassed solution of (R,SFc)-1-iodo-2-p-tolylsulfinylferrocene, (R,SFc)-2, (900 mg, 2.00 mmol) in THF (15 mL) and the freshly prepared ferrocenyl-zinc compound. The resulting red-brown solution was heated to reflux under argon at 75 C for 19 h. The reaction mixture was cooled to r.t., quenched with 5 M NaOH (6 mL), diluted with water and extracted with ethyl acetate (3 ¡Á 70 mL). The combined organic phases were washed with water (3 ¡Á 50 mL) and brine (2 ¡Á 50 mL) and dried over MgSO4. The mixture was filtered and the solvent was evaporated. The crude product was purified by column chromatography (silica, PE/EE/NEt3 = 10/10/1 ? 1/2/1). After a second chromatography (aluminium oxide, PE/EE/NEt3 = 1/1/1 ? 1/2/1) was the pure product obtained as an orange solid (yield: 55 mg, 5%). Single crystals suitable for X-ray structure determination were obtained from a solution of the product in EtOAc/PE by slow evaporation of the solvents. M.p.: 158-163 C. 1H NMR (600.1 MHz, CDCl3): delta 1.51 (d, J = 6.9 Hz, 3H, CH3CH), 1.72 (s, 6H, N(CH3)2), 2.42 (s, 3H, Ph-CH3), 3.59 (q, J = 6.9 Hz, 1H, CH3CH), 4.09 (m, 1H, H3?), 4.24 (s, 6H, Cp? + H3), 4.27 (s, 5H, Cp?), 4.39 (dd, J1 = J2 = 2.5 Hz, 1H, H4), 4.42 (dd, J1 = J2 = 2.5 Hz, 1H, H4?), 4.70 (m, 1H, H5?), 4.76 (m, 1H, H5), 7.31 (d, J = 8.0 Hz, 2H, Ph-meta), 7.67 (d, J = 8.0 Hz, 2H, Ph-ortho). 13C{1H} NMR (150.9 MHz, CDCl3): delta 18.9 (bs, CH3CH), 21.5 (Ph-CH3), 40.9 (2C, N(CH3)2), 55.5 (CH3CH), 66.9 (C4), 67.8 (2C, C3 + C3?), 68.8 (C4?), 69.8 (5C, Cp?), 70.7 (5C, Cp?), 71.8 (C5), 73.9 (C5?), 82.0 (C1), 88.6 (C1?/C2?), 89.5 (C2), 93.9 (C1?/C2?), 125.7 (2C, Ph-ortho), 129.4 (2C, Ph-meta), 141.0 (Ph-ipso), 141.4 (Ph para). HR-MS (ESI, MeOH/MeCN): m/z [M + H]+ calcd. 580.1060 for C31H34Fe2NOS; found: 580.1047. [alpha]lambda20 (nm): -739 (589), -843 (578), -1380 (546) (c 0.225, CHCl3).
31886-58-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,31886-58-5 ,(R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine, other downstream synthetic routes, hurry up and to see
Reference£º
Article; Gross, Manuela A.; Mereiter, Kurt; Wang, Yaping; Weissensteiner, Walter; Journal of Organometallic Chemistry; vol. 716; (2012); p. 32 – 38;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis