One of the major reasons is to use measurements of the macroscopic properties of a system, such as the rate of change in the concentration of reactants or products with time, to discover the sequence of events that occur at the molecular level.119139-23-0, 3,4-Di(1H-indol-3-yl)-1H-pyrrole-2,5-dione, introduce a new downstream synthesis route. 119139-23-0
EXAMPLE 10 1.4 ml of acetaldehyde dimethyl acetal and 10 mg of p-toluenesulphonic acid were added to a solution of 250 mg of 3,4-bis(3-indolyl)-1H-pyrrole-2,5-dione in 40 ml of chloroform. The resulting mixture was heated to reflux for 18 hours under nitrogen. The obtained solution was evaporated and the residue was purified on silica gel with ethyl acetate/petroleum ether (1:2). Recrystallization from chloroform/hexane gave 165 mg of 3,4-bis[1-(1-methoxyethyl)-3-indolyl]-1H-pyrrole-2,5-dione, m.p. 222-224 C.
This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of 119139-23-0, We look forward to the emergence of more reaction modes in the future.
Reference£º
Patent; Hoffmann-La Roche Inc.; US5057614; (1991); A;,
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis¡ªI. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis