The important role of C7H9N

Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products. In my other articles, you can also check out more blogs about 108-47-4

As a society publisher, Reference of 108-47-4, everything we do is to support the scientific community – so you can trust us to always act in your best interests, and get your work the international recognition that it deserves. 108-47-4, name is 2,4-Dimethylpyridine. In an article,Which mentioned a new discovery about 108-47-4

Reaction of NiCl2(2,4-lutidine)2 (1) with Tl[Me2NN] (3) in THF results in the transmetallation of the beta-diketiminate ligand from which the tetrahedral {[Me2NN]NiCl}2 (4) was isolated in poor yield. After filtration of the TlCl formed in the reaction between 1 and 3 in THF, addition of Grignard reagents RMgBr results in the isolation of monoalkyl complexes [Me2NN]Ni(R)(2,4-lutidine) (R=Me (5), Et (6), Pr (7)) in 40-70% yield. X-ray structures 5-7 of show these monoalkyls to be somewhat crowded, square planar species. NMR studies of the diamagnetic monoalkyl complexes show that lutidine dissociation/reassociation occurs on the NMR timescale at room temperature. In ethyl and propyl complexes 6 and 7, an equilibrium between the four coordinate [Me2NN]Ni(R)(2,4-lutidine) and a lutidine-free species [Me2NN]Ni(R) (R=Et, Pr) is observed. Broad, high-field 1H resonances consistent with the presence of beta-H agostic alkyl groups are observed for the base-free species. The observation of two broad upfield 1H NMR signals at delta -2.7 and -7.3 ppm for the base-free Ni-propyl complex suggests a mixture of primary and secondary beta-agostic isomers that reversibly interconvert by beta-H elimination/reinsertion. Ethylene slowly inserts into monoalkyls 5-7 demonstrate to give highly branched ethylene oligomers.

Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products. In my other articles, you can also check out more blogs about 108-47-4

Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis