In classical electrochemical theory, both the electron transfer rate and the adsorption of reactants at the electrode control the electrochemical reaction. Formula: C7H9N, The reactant in an enzyme-catalyzed reaction is called a substrate. 108-47-4, name is 2,4-Dimethylpyridine. In an article,Which mentioned a new discovery about 108-47-4
The relative electrophoretic mobilities of a series of closely related alkylpyridines in capillary electrophoresis have been predicted by proposing that they experience a preferred orientation under the influence of the applied electrical field. This means that analytes with the same van der Waals volumes can exhibit different effective hydrodynamic radii to motion through the buffer solution. Additional terms for these differences in apparent volume and for the forces acting to orient the analytes can be calculated from the molecular structures and influence the dominant effect of the total volume. The model could correctly predict the relative mobility of structural, positional, and geometric isomers of alkylated and unsaturated pyridines.
Because a catalyst decreases the height of the energy barrier, its presence increases the reaction rates of both the forward and the reverse reactions by the same amountFormula: C7H9N, you can also check out more blogs about108-47-4
Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis