Safety of 2,4-Dimethylpyridine, Academic researchers, R&D teams, teachers, students, policy makers and the media all rely on us to share knowledge that is reliable, accurate and cutting-edge. 108-47-4, Name is 2,4-Dimethylpyridine,introducing its new discovery.
Nitration of benzene and monosubstituted benzenes in liquid SO2 by dinitrogen pentaoxide at – 11 deg C gave the corresponding nitroarenes with substitution patterns similar to those obtained by nitrations with HNO3-H2SO4.For acetophenone an o/m ratio of 0.94 was obtained.The yields were dependent on the substituents.With a 1:1 ratio of arene: N2O5 the yields varied from 73percent for toluene to 0.4percent for nitrobenzene as substrates.From competition experiments and the nitration of bibenzyl it was concluded that the reaction was faster than the macroscopic rate of mixing.The qualitative order of reactivity for PhX was X = OCH3>CH3>H>Cl>CH3CO>NO2.Nitration with N2O5 in liquid CO2 gave similar results.Nitration of pyrimidine, pyrrole, imidazole and indole with N2O5-SO2 gave no nitrated products.With thiophene, 2- (34percent) and 3-nitrothiophene (5percent) together with 2,4-(16percent) and 2,5-dinitrothiophene (8percent) were obtained.With pyridine, mono- and di-methylpyridines, quinoline, isoquinoline and 4-phenylpyridine nitration of the pyridine ring was obtained.The yields varied from ca. 70percent to 16percent, except for 3,5-, 2,5- and 2,6-dimethylpyridine for which only traces of nitro-dimethylpyridines were obtained.The reaction with the pyridines appears to be intramolecular both in the SO2 phase and in the water phase used for quenching the reaction.The reaction was proposed to proceed by a complex formed in liquid SO2:
In conclusion, we affirm that quantitative kinetic descriptions of catalytic behavior continue to serve as an indispensable tool to navigate research efforts intended to model. If you are interested in 108-47-4, you can contact me at any time and look forward to more communication. Safety of 2,4-Dimethylpyridine
Reference:
Chiral nitrogen ligands in late transition metal-catalysed asymmetric synthesis—I. Addressing the problem of ligand lability in rhodium-catalysed hydrosilations,
Nitrogen-Containing Ligands for Asymmetric Homogeneous and Heterogeneous Catalysis